viernes, 26 de septiembre de 2014

Simulaciones de redes

TIPOS DE SIMULADORES DE REDES
  • Simuladores de red

    • NEST (Network Simulator Tesbed)
    Simulador desarrollado por la Universidad de Columbia fue implementado en lenguaje C para plataformas UNIX, que cuenta con la posibilidad de que el usuario puede ejecutar sus propios comandos en dicho lenguaje, provee al usuario una simulación de redes distribuidas y protocolos básicos, posee una interfaz grafica para el mejor análisis del resultado de la simulación (10).
    • MaRS (Maryland Routing Simulator)
    Simulador de eventos discretos enfocado al estudio de algoritmos de ruta en redes WAN que surgió en1990 en la Universidad de Maryland y es una evolución del simulador NetSim, está escrito en lenguaje C posee dos interfaces graficas Xlib y Motif (11).

    • REAL (Realistic and Large Network Simulator)
    Software de carácter libre desarrollado por la Universidad de Cornell cuyo objetivo principal es el de estudiar el comportamiento de flujos y el esquema de control de congestión de redes de datos packet switched, usa lenguaje en C y posee una interfaz grafica denominada GUI. Este software de simulación no permite el estudio de sistemas o parámetros que no afecten en forma directa el flujo de conexiones TCP/IP en consecuencia es muy limitado a la hora de modelar un sistema real (12).

    • NCTUns 2.0 (Network Simulador/Emulador)
    Desarrollado por el profesor S. Y. Wang en la Universidad de Harvard quien presento este simulador para obtener el título de Ph.D. en 1999.
    Esta herramienta es tanto un simulador como un emulador el cual utiliza el mismo protocolo TCP/IP de la maquina donde está instalado brindando un mayor desempeño a la simulación, tiene la posibilidad de simular varias clases de redes como son las redes estructuras, WAN wireless, redes OBS entre otros, algunos de los protocolos que soporta están entre otros IEEE 802.11, IEEE 802.3, RIP, UDP, TCP.
    Cuenta con una interfaz grafica GUI la que le permite al usuario dibujar y configurar la red deseada (13).
    • J-SIM (Java Simulator)
    Desarrollado por las Universidades de Illinois y Ohio con el patrocinio de NSF, DARPA y CISCO.
    J-sim es un simulador de red escrito en Java y posee una interfaz de script para la integración de diferentes lenguajes de script como Perl, Tcl o Python.
    Este simulador es muy parecido al NS-2 ya que posee doble lenguaje Java pero realmente usa Jacl que es una extensión de java (14).
    • S3 (project / Scalable Simulation Framework)
    Simulador patrocinado por DAPRA capaz de soportar tanto lenguaje en C++ como Java es altamente escalable y permite prácticamente todos los protocolos de internet, está basado en 5 clases ( Entity, inchannel, outchannel, process y event).
    La interacción con la simulación se hace atreves de DML.
    • NS-2 (Network Simulator 2)
    Software de carácter libre implementado para la simulación de redes basado en eventos discretos, que surgió a finales de 1980 y cuya base es el simulador de redes ""REAL""; que tiene la capacidad de simular tanto protocolos unicast como multicast, con mayor uso en la investigación de redes móviles ad-hoc, también tiene una gran variedad de protocolos tanto en redes estructuras como en redes wireless (1).
    • CISCO PACKET TRACER
    Software libre implementado para la simulación de redes tanto estructuradas como wireless, fue desarrollado por Cisco Systems, antes de llamarse Cisco Packet Tracer se conocía con el nombre de Routerswork.
    Packet Tracer es un simulador que permite la realización y diseño de redes, así como la detección y corrección de errores en sistemas de comunicaciones, además cuenta con la posibilidad de analizar cada proceso que se realiza en el programa de acuerdo al modelo de las capas OSI que puedan intervenir en dicho proceso; razón por la cual es una herramienta muy útil para el proceso de aprendizaje del funcionamiento y configuración de redes (2).




PARA QUE SE UTILIZA PACKET TRACER
Packet Tracer es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de Cisco CCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.
Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practicar y aprender por descubrimiento.
Packet Tracer 6.0 es la última versión del simulador de redes de Cisco Systems, herramienta fundamental si el alumno está cursando el CCNA o se dedica al networking.
En este programa se crea la topología física de la red simplemente arrastrando los dispositivos a la pantalla. Luego clickando en ellos se puede ingresar a sus consolas de configuración. Allí están soportados todos los comandos del Cisco OS e incluso funciona el "tab completion". Una vez completada la configuración física y lógica de la net, también se puede hacer simulaciones de conectividad (pings, traceroutes, etc) todo ello desde las misma consolas incluidas.
Una de las grandes ventajas de utilizar este programa es que permite "ver" (opción "Simulation") cómo deambulan los paquetes por los diferentes equipos (switchs, routers, etc), además de poder analizar de forma rápida el contenido de cada uno de ellos en las diferentes "capas".

VENTANA DE PACKET TRACER (PARTES)
COMO CREAR UNA LAN EN PACKET TRACER
  • Abrimos Cisco Packet Tracer 
  • Insertamos 1 servidor, 1 switch y 5 computadoras genéricas Servidor Switch Computadoras generias
  •  Le ponemos nombre a las computadoras y la conectamos Nombre Conexión de cable
  •  Configuramos la ip de cada computadora Rocky 192.168.1.10 Balboa 192.168.1.7 Ramon 192.168.1.9Cx 192.168.1.95GPL 192.168.1.64 5. Enviar un ping a la maquina deseada dando clic en Simbolo de Sistema y poniendo ping IPEjemplo: Ping 192.168.1.10
  •  Ahora ponemos ipconfig para ver la configuración de la maquina
  •  Para finalizar solo oprimimos ipconfig /all para ver a mas detalle la configuración de la maquina

Modos de operacion en Packet Tracer


El PT opera en modo de tiempo real y simulación, siendo tiempo real el que se muestra inicialmente. Tiempo real significa que los eventos se simulan exactamente como los ejecutarían los dispositivos reales, es decir, si se envía un paquete de un dispositivo a otro eso sucede en milisegundos y lo único que nosotros observamos en el espacio lógico es el piloto (punto verde) del enlace titilar. En éste modo de operación las cosas suceden casi inmediatamente y podemos hacer pruebas en tiempo real como lo haríamos con equipos reales.
Una de las pruebas de conectividad básicas consiste en agregar una PDU simple, que en la interfaz se ve como un sobre con un signo de más ( + ) a un costado. Esta PDU es equivalente a un paquete único de Ping que toma como direcciones origen las del primer dispositivo al que se le da clic y direcciones destino las del segundo dispositivo al que se da clic. Una vez que señalamos el destino de la PDU el paquete se dispara inmediatamente en tiempo real y en el panel de Escenarios aparece una línea indicando lo que le pasa a esa PDU y ofreciéndonos algunas opciones para manipularla. Por ejemplo, cuando soltamos la PDU, si hay redes ethernet/fastethernet involucradas el paquete suele fallar (Failed), para repetirlo sólo hay que dar doble clic en el “botón” rojo al inicio de la línea. En esta misma línea, al final y usualmente fuera de la pantalla (hay que mover la barra de desplazamiento horizontal del panel) se puede dar doble clic a Edit y cambiar parámetros del paquete, por ejemplo decirle que se repita cada X segundos y cambiar los parámetros de origen, lo cual cuando se trabaja con enrutadores -que tienen múltiples interfaces, redes y direcciones diferentes en cada una- puede resultar muy útil. También podemos cambiar a qué aplicación pertenece el paquete, pero eso puede ser complicado si no conocemos los detalles de la aplicación, eso lo exploraremos en los tópicos avanzados. Finalmente el último elemento de la línea que identifica una PDU es Borrar (delete), con lo que se elimina la PDU del listado y del espacio de trabajo.
                        escenario
Si alguien se pregunta para qué sirve entonces el botón Delete y a qué se refiere el botón New, pues es a los escenarios, en pocas palabras conjuntos de paquetes que se envían por la topología. De éste tema hablaremos en futuras entregas pero los invito a que exploren esta función con lo que ya saben.
El modo de simulación es un modo especial en el que se pude observar cómo viajan los paquetes entre los dispositivos. Éste modo permite ver a un alto nivel de detalle lo que pasa en la red y controlar el nivel de detalle que se desea ver, por ejemplo, en una red ordinaria hay muchos protocolos que usan automáticamente los dispositivos para comunicarse información de control, y cada uno genera flujos de paquetes, por lo que con frecuencia es muy importante permitir que sólo los protocolos de interés se vean en una simulación. Obviamente también es importante controlar la velocidad a la que suceden los eventos de la red. El modo de simulación lo exploraremos en detalle en una próxima entrada.
topologia 
topologias
Tipos de conexiones disponibles: 

Cable Serial
consola

directo
cruzado
fibra óptica
teléfono 

Dispositivos terminales: 
PC
Servidores
Impresoras
Teléfonos IPDispositivos 

Adicionales: PC con tarjeta inalámbrica


VENTAJAS Y DESVENTAJAS de Packet Tracer

Ventajas
 Es una herramienta muy útil para la enseñanza de fundamentos teóricos sobre 
Redes de comunicaciones.
 Posee una interfaz de usuario muy fácil de manejar, e incluye documentación 
y tutoriales sobre el manejo del mismo.
 Permite ver el desarrollo por capas del proceso de transmisión y recepción de 
paquetes de datos de acuerdo con el modelo de referencia OSI.
 Permite la simulación del protocolo de enrutamiento RIP V2 y la ejecución del 
protocolo STP y el protocolo SNMP para realizar diagnósticos básicos a las 
conexiones entre dispositivos del modelo de la Red.

Desventajas

 Sólo permite modelar Redes en términos de filtrado y retransmisión de 
paquetes.
 No permite crear topologías de Red que involucren la implementación de
tecnologías diferentes a Ethernet tales como Frame Relay, ATM, XDSL, 
Satelitales, telefonía celular entre otras.
 Ya que su enfoque es pedagógico, el programa se considera de fidelidad 

media para implementarse con fines comerciales.


Reglas de interconexion de dispositivos en packet tracer

Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:



Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).

Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

Interconexión de Dispositivos

Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría sería interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos “conecciones” y nos aparecerán todos los medios disponibles.

jueves, 18 de septiembre de 2014

Topologias de Redes

Bus
Una red en bus es aquella topología que se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.
                                       
Ventajas

  • Facilidad de implementación y crecimiento. 
  • Faciles de instalar  
  • Requiere menor cantidad de fisico
  • Simplicidad en la arquitectura

Desventajas
  •  Hay un límite de equipos dependiendo de la calidad de la señal.
  •  Puede producirse degradación de la señal.
  •  Complejidad de reconfiguración y aislamiento de fallos.
  •  Limitación de las longitudes físicas del canal.
  •  Un problema en el canal usualmente degrada toda la red.
  •  El desempeño se disminuye a medida que la red crece.
  •  El canal requiere ser correctamente cerrado (caminos cerrados).
  •  Altas pérdidas en la transmisión debido a colisiones entre mensajes.
  •  Es una red que ocupa mucho espacio.
                             
Anillo
Una red en anillo es una topología de red en la que cada estación tiene una única conexión de entrada y otra de salida. Cada estación tiene un receptor y un transmisor que hace la función de traductor, pasando la señal a la siguiente estación.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.
En un anillo doble (Token Ring), dos anillos permiten que los datos se envíen en ambas direcciones (Token passing). Esta configuración crea redundancia (tolerancia a fallos). Evita las colisiones.
                                                          ventajas 
  • El sistema provee un acceso equitativo para todas las computadoras.
  • El rendimiento no decae cuando muchos usuarios utilizan la red.
  • Arquitectura muy sólida.
  • Si un dispositivo u ordenador falla, la dirección de la información puede cambiar de sentido para que llegue a los demás dispositivos (en casos especiales).
  • Redes
  • FDDI                                  
                                                        desventajas
  • Longitudes de canales (si una estación desea enviar a otra, los datos tendrán que pasar por todas las estaciones intermedias antes de alcanzar la estación de destino).
  • El canal usualmente se degradará a medida que la red crece.
  • Difícil de diagnosticar y reparar los problemas.
  • SI se encuentra enviando un archivo podrá ser visto por las estaciones intermedias antes de alcanzar la estación de destino.
                                           

Estrella
Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dada su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en éstas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes de usuarios.
Ventajas
  • Posee un sistema que permite agregar nuevos equipos fácilmente.
  • Reconfiguración rápida.
  • Fácil de prevenir daños y/o conflictos.
  • Centralización de la red.
  • no se desconecta nunca
Desventajas
  • Si el Hub (repetidor) o switch central falla, toda la red deja de transmitir.
  • Es costosa, ya que requiere más cable que las topologías en bus o anillo.
  • El cable viaja por separado del concentrador a cada computadora.
                                 

Arbol
La red en árbol es una topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central. En cambio, tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos. Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
La topología en árbol puede verse como una combinación de varias topologías en estrella. Tanto la de árbol como la de estrella son similares a la de bus cuando el nodo de interconexión trabaja en modo difusión, pues la información se propaga hacia todas las estaciones, solo que en esta topología las ramificaciones se extienden a partir de un punto raíz (estrella), a tantas ramificaciones como sean posibles, según las características del árbol.
Ventajas
  • Cableado punto a punto para segmentos individuales.
  • Soportado por multitud de vendedores de software y de hardware.
  • Facilidad de resolución de problemas
Desventajas
  • Se requiere mucho cable.
  • La medida de cada segmento viene determinada por el tipo de cable utilizado.
  • Si se viene abajo el segmento principal todo el segmento se viene abajo con él.
  • Es más difícil su configuración.
                                 


Telaraña - Malla
La topología en malla es una topología de red en la que cada nodo está conectado a todos los nodos. De esta manera es posible llevar los mensajes de un nodo a otro pordiferentes caminos. Si la red de malla está completamente conectada, no puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos losdemás servidores.
El establecimiento de una red de malla es una manera de encaminar datos, voz e instrucciones entre los nodos. Las redes de malla se diferencian de otras redes en que los elementos dela red (nodo) están conectados todos con todos, mediante cables separados. Esta configuración ofrece caminos redundantes por toda la red de modo que, si falla un cable, otro se hará cargo del tráficoEsta topología, a diferencia de otras (como la topología en árbol y la topología en estrella), no requiere de un servidor o nodo central, con lo que se reduce el mantenimiento (un error en un nodo,sea importante o no, no implica la caída de toda la red).
Ventajas
La ventaja de esta topología es la fiabilidad frente a fallas, si una computadora falla no afecta a las demás, tiene grandes posibilidades de reconfiguración y permite tráficos elevados de información con retardos pequeños.
      Desventajas
       El costo de la red puede aumentar en los casos en los que se implemente de forma alámbrica, la topología de red y las características de la misma implican el uso de más recursos.
                                    

viernes, 12 de septiembre de 2014

Tipos de Cables utilizados en redes alambricas


Los tipos de cable más utilizados en redes alámbricas son:


Cable de par trenzado sin blindar / Unshielded Twisted Pair (UTP) Cable.

Este tipo de cable es el más utilizado. La calidad del cable y consecuentemente la cantidad de datos que es capaz de transmitir varían en función de la categoría del mismo. Los tipos van desde el cable de teléfono hasta el cable de categoría 5 capaz de transferir 100 Megabytes por segundo.

El estándar para conectores del cable UTP es el RJ-45. Se trata de un conector de plástico similar al conector del cable telefónico. Las siglas RJ se refieren al estándar Registerd Jack, creado por la industria telefónica. Este estándar define la colocación de los cables en su pin correspondiente.

Una de las desventajas del cable UTP es que es susceptible a las interferencias eléctricas. Para entornos con este problema existe un tipo de cable UTP que lleva blindaje, esto es, protección contra interferencias eléctricas. Este tipo de cable se utiliza con frecuencia en redes con topología token ring.
                       

Cable de fibra óptica
El cable de fibra óptica consiste en un centro de cristal rodeado de varias capas de material protector. Lo que se transmite no son señales eléctricas sino luz con lo que se elimina la problemática de las interferencias. Esto lo hace ideal para entornos en los que haya gran cantidad de interferencias eléctricas. También se utiliza mucho en la conexión de redes entre edificios debido a su inmunidad a la humedad y a la exposición solar.
Con un cable de fibra óptica se pueden transmitir señales a distancias mucho mayores que con cables de par trenzado. Además, la cantidad de información capaz de transmitir es mayor por lo que es ideal para redes a través de las cuales se desee llevar a cabo videoconferencia o servicios interactivos. En algunas ocasiones escucharemos 10BaseF como referencia a este tipo de cableado. En realidad estas siglas hablan de una red Ethernet con cableado de fibra óptica.

Sus propiedades se deben a que cuenta con las siguientes características:
  • El aislante exterior está hecho de teflón o PVC.
  • Fibras Kevlar ayudan a dar fuerza al cable y hacer más difícil su ruptura.
  • Se utiliza un recubrimiento de plástico para albergar a la fibra central.
El centro del cable está hecho de cristal o de fibras plásticas.
               




Redes inalambricas.
Una de las tecnologías más prometedoras y discutidas en esta década es la de poder comunicar computadoras mediante tecnología inalámbrica. La conexión de computadoras mediante Ondas de Radio o Luz Infrarroja, actualmente está siendo ampliamente investigado. Las Redes Inalámbricas facilitan la operación en lugares donde la computadora no puede permanecer en un solo lugar, como en almacenes o en oficinas que se encuentren en varios pisos.
También es útil para hacer posibles sistemas basados en plumas. Pero la realidad es que esta tecnología está todavía en pañales y se deben de resolver varios obstáculos técnicos y de regulación antes de que las redes inalámbricas sean utilizadas de una manera general en los sistemas de cómputo de la actualidad
No se espera que las redes inalámbricas lleguen a remplazar a las redes cableadas. Estas ofrecen velocidades de transmisión mayores que las logradas con la tecnología inalámbrica. Mientras que las redes inalámbricas actuales ofrecen velocidades de 2 Mbps, las redes cableadas ofrecen velocidades de 10 Mbps y se espera que alcancen velocidades de hasta 100 Mbps. Los sistemas de Cable de Fibra  logran velocidades aún mayores, y pensando futuristamente se espera que las redes inalámbricas alcancen velocidades de solo 10 Mbps.
Sin embargo se pueden mezclar las redes cableadas y las inalámbricas, y de esta manera generar una "Red Híbrida" y poder resolver los últimos metros hacia la estación. Se puede considerar que el sistema cableado sea la parte principal y la inalámbrica le proporcione movilidad adicional al equipo y el operador se pueda desplazar con facilidad dentro de un almacén o una oficina. Existen dos amplias categorías de Redes Inalámbricas:
    1. De Larga Distancia.- Estas son utilizadas para transmitir la información en espacios que pueden variar desde una misma ciudad o hasta varios países circunvecinos (mejor conocido como Redes de Area Metropolitana MAN); sus velocidades de transmisión son relativamente bajas, de 4.8 a 19.2 Kbps.
    2. De Corta Distancia.- Estas son utilizadas principalmente en redes corporativas cuyas oficinas se encuentran en uno o varios  que no se encuentran muy retirados entre si, con velocidades del orden de 280 Kbps hasta los 2 Mbps.

cable stp:
El cable de par trenzado usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferenciasde fuentes externas y diafonía de los cables opuestos.
El cable de par trenzado consiste en dos alambres de cobre aislados que se trenzan de forma helicoidal, como una molécula de ADN. De esta forma el par trenzado constituye un circuito que puede transmitir datos. Esto se hace porque dos alambres paralelos constituyen una antena simple. Cuando se trenzan los alambres, las ondas se cancelan, por lo que la radiación del cable es menos efectiva.1 Así la forma trenzada permite reducir la interferencia eléctrica tanto exterior como de pares cercanos.
Un cable de par trenzado está formado por un grupo de pares trenzados, normalmente cuatro, recubiertos por un material aislante. Cada uno de estos pares se identifica mediante un color.
El entrelazado de cables que llevan señal en modo diferencial (es decir que una es la invertida de la otra), tiene dos motivos principales:
  1. Si tenemos que la forma de onda es A(t) en uno de los cables y en el otro es -A(t) y n(t) es ruido añadido por igual en ambos cables durante el camino hasta el receptor, tendremos: A(t) + n(t) en un cable y en el otro -A(t) + n(t) al hacer la diferencia en el receptor, quedaremos con 2A(t) y habremos eliminado el ruido.
  2. Si pensamos en el campo magnético que producirá esta corriente en el cable y tenemos en cuenta que uno está junto al otro y que en el otro la corriente irá en sentido contrario, entonces los sentidos de los campos magnéticos serán opuestos y el módulo será prácticamente el mismo, con lo cual eliminaremos los campos fuera del cable, evitando así que se induzca alguna corriente en cables aledaños.

El cable coaxialcoaxcable o coax,1 creado en la década de 1930, es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante (también denominada chaqueta exterior).
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.


Técnica de comunicación en redes inalambricas 
El término red inalámbrica (Wireless network en inglés) es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagnéticas. La transmisión y la recepción se realizan a través de puertos.
Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe tener una seguridad mucho más exigente y robusta para evitar a los intrusos.
En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.

Según el rango de frecuencias utilizado para transmitir, el medio de transmisión pueden ser las ondas de radio, las microondas terrestres o por satélite, y los infrarrojos, por ejemplo. Dependiendo del medio, la red inalámbrica tendrá unas características u otras:
  • Ondas de radio: las ondas electromagnéticas son omnidireccionales, así que no son necesarias las antenas parabólicas. La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas. En este rango se encuentran las bandas desde la ELF que va de 3 a 30 Hz, hasta la banda UHF que va de los 300 a los 3000 MHz, es decir, comprende el espectro radioeléctrico de 30 - 3000000000 Hz.
  • Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.
  • Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias.
  • Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.                                                                                                    

lunes, 8 de septiembre de 2014

Métodos de transmision de datos

♥SEGÚN LA MANERA DE TRANSMISIÓN
Banda Base:
Es utilizada para cortas distancias debido a su bajo costo. El MODEM no efectúa modulación alguna sino que solo las codifica.Los datos se codifican para solucionar los siguientes aspectos inherentes a la banda base:. Disminuir la componente continua. Proveer sincronismo entre transmisor y receptor. Permitir detectar la presencia de la señal en la línea Como se está trabajando con pulsos, de acuerdo al desarrollo de Fourier, se puede tener un valor importante de la componente continua. Al codificar se trata de disminuir dicho valor pues el sistema de transmisión puede poseer amplificadores y/o transformadores que no tenían en cuenta la componente continua y ello provocaría una deformación de la señal.Es posible utilizar banda base en redes LAN y en otro tipo de redes siempre y cuando no se emplee la red pública de comunicaciones.
Banda Ancha:
Se conoce como banda ancha en telecomunicaciones a la transmisión de datos simétricos por la cual se envían simultáneamente varias piezas de información,con el objeto de incrementar la velocidad de transmisión efectiva.En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión. Así se utilizan dos o más canales de datos simultáneos en una única conexión, lo que se denomina multiplexación.
El acceso se obtiene a través de uno de los siguientes métodos: Línea digital del suscriptor (DSL)Módem para cable Fibra Inalámbrica Satélite Banda ancha a través de las líneas eléctricas (BPL)

SEGÚN LA INFORMACIÓN 
Asincrona:
Esta se desarrolló para solucionar el problema de la sincronía y la incomodidad de los equipos.
En este caso la temporización empieza al comienzo de un caracter y termina al final, se añaden dos elementos de señal a cada caracter para indicar al dispositivo receptor el comienzo de este y su terminación.
Al inicio del carácter se añade un elemento que se conoce como "Start Space"
(espacio de arranque),y al final una marca de terminación.
Para enviar un dato se inicia la secuencia de temporización en el dispositivo receptor con el elemento de señal y al final se marca su terminación.
Sincrona:
Este tipo de transmisión se caracteriza porque antes de la transmisión de propia de datos, se envían señales para la identificación de lo que va a venir por la línea, es mucho mas eficiente que la Asincrona pero su uso se limita a líneas especiales para la comunicación de ordenadores, porque en líneas telefónicas deficientes pueden aparecer problemas.

♥SEGÚN EL MEDIO DE TRANSMISIÓN 
Serie:
En este tipo de transmisión los bits se trasladan uno detrás del otro sobre una misma línea, también se transmite por la misma línea.
Este tipo de transmisión se utiliza a medida que la distancia entre los equipos aumenta a pesar que es más lenta que la transmisión paralelo y además menos costosa. Los transmisores y receptores de datos serie son más complejos debido a la dificultad en transmitir y recibir señales a través de cables largos.
La conversión de paralelo a serie y viceversa la llevamos a cabo con ayuda de registro de desplazamiento.
La transmisión serie es sincrona si en el momento exacto de transmisión y recepción de cada bit esta determinada antes de que se transmita y reciba y asíncrona cuando la temporizacion de los bits de un carácter no depende de la temporizacion de un carácter previo.
Paralelo:
La transmisión de datos entre ordenadores y terminales mediante cambios de corriente o tensión por medio de cables o canales; la transferencia de datos es en paralelo si transmitimos un grupo de bits sobre varias líneas o cables.
En la transmisión de datos en paralelo cada bit de un caracter se transmite sobre su propio cable. En la transmisión de datos en paralelo hay un cable adicional en el cual enviamos una señal llamada strobe ó reloj; esta señal le indica al receptor cuando están presentes todos los bits para que se puedan tomar muestras de los bits o datos que se transmiten y además sirve para la temporización que es decisiva para la correcta transmisión y recepción de los datos.
La transmisión de datos en paralelo se utiliza en sistemas digitales que se encuentran colocados unos cerca del otro, además es mucho mas rápida que la serie, pero además es mucho mas costosa.

♥SEGÚN LAS SEÑALES TRANSMITIDAS
Analógica
En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.
En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.
Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.
Ej: Teletipo = Servicio para la transmisión de un telegrama.
La mayor de las computadoras en servicio hoy en día utilizan u operan con el sistema binario por lo cual viene más la transmisión binaria, ya sea de terminal a computadora o de computadora a computadora.

La transmisión digital consiste en el envío de información a través de medios de comunicaciones físicos en forma de señales digitales. Por lo tanto, las señales analógicas deben ser digitalizadas antes de ser transmitidas.
Sin embargo, como la información digital no puede ser enviada en forma de 0 y 1, debe ser codificada en la forma de una señal con dos estados, por ejemplo:
  • dos niveles de voltaje con respecto a la conexión a tierra
  • la diferencia de voltaje entre dos cables
  • la presencia/ausencia de corriente en un cable
  • la presencia/ausencia de luz